
IT-Symposium 2005

www.decus.de 1

© 2005 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

OpenVMS
Moving
Custom
Code

Thomas Siebold, Senior Software Consultant
Business Critical Systems
Transition Engineering and Consulting Group

thomas.siebold@hp.com

2

Topics
• Porting Overview

• Compiler

• Binary Translation

• Software Development

• Application Considerations

• Middelware

• ISVs

• Next steps...

IT-Symposium 2005

www.decus.de 2

© 2005 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Porting Overview

4

Porting to OpenVMS I64
• Porting applications to I64 is easy
• Usually all that is required is to recompile/

relink and requalify the application.
−Privileged code may require more effort
− Porting 100,000 lines of C code did not require

even one change

HOWEVER

IT-Symposium 2005

www.decus.de 3

5

Porting to OpenVMS I64
• MANY!!! Things have changed in the O/S
−Different primitives
−Different default floating point standard
−New compilers
−New image format
−New calling standard
−No console/PAL code

Most changes are transparent but these changes
might affect your application

© 2005 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Compiler

IT-Symposium 2005

www.decus.de 4

7

Compiler Version Mapping
Alpha vs. Itanium(r)

V5.9V5.8APascal
na (Alpha only)V1.2Macro-64
V1.0V4.1-18Macro-32
1.4.2 (-2)1.4.2Java
V7.1V6.5C++
V7.1V6.5C
V8.0V7.5Fortran 90
na (Alpha only)--Fortran 77
V8.2 (-13xx)V8.2-1286Cobol
V1.1 (-04x)V1.10-030Bliss
V1.6V1.5Basic

ItaniumAlphaCompiler

8

Use latest compilers
• Porting to Itanium requires to use the latest

compiler versions
− Some issues may show up due to changes and even

bugfixes to the compilers.

• Recommendation:
− build application on Alpha using the latest version of the

compilers to uncover any hidden bugs/changes
• Result:
− Easier move to new platform

IT-Symposium 2005

www.decus.de 5

9

Itanium® Compiler Plans (1 of 3)
• C
−CPQ C

• Itanium® architecture implementations of OpenVMS CPQ C
V6.5 compiler

• Use for recompile/relink/requalify
• GEM backend code generator

−C Dialect Support in C++ Compiler
• Will include some features from CPQ C but may require source

code changes
• Compiler for moving forward
• Intel® backend code generator
• Will be made this available with a future release of OpenVMS

10

Itanium® Compiler Plans (2 of 3)
• C++

− Based on the same front end compiler technology as Compaq C++
− Use for recompile/relink/requalify
− Intel® backend code generator

• COBOL, BASIC, PASCAL, BLISS
− Itanium® architecture implementations of the current OpenVMS

compilers
− GEM backend code generator

• Java
− Itanium® architecture implementation of J2SE V1.4.2

IT-Symposium 2005

www.decus.de 6

11

Itanium® Compiler Plans (3 of 3)
• FORTRAN

− Itanium® architecture implementation of the current OpenVMS
Fortran 90 compiler

− GEM backend code generator
− Our plan is to replace GEM with the Intel® backend code

generator in a future release in order to take advantage of
enhancements in processor chip technology

• IMACRO
− Compiles ported VAX Macro-32 code for Itanium® architecture
− Itanium® architecture equivalent of AMACRO

• ADA
− Ada-95 compiler from Ada Core Technology (GNAT)
− HP Ada (Ada-83) compiler will not be ported

© 2005 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Binary Translation

IT-Symposium 2005

www.decus.de 7

13

Options for Applications without Source
Code or Development Expertise

• Software Emulation
−Emulator (Charon-VAX)

• Binary Translation
−VEST Translator and TIE
−AEST Translator and TIE

• Rewrite Applications / Purchase Replacement
Applications (not covered here)

14

Software Emulation

• Images run on new platform
• Code interpretation (= emulation) at run time
• Positive
−Nearly effortless
− fast

• Negative
−Some loss of performance
−Maintenance & Extension difficult

IT-Symposium 2005

www.decus.de 8

15

Binary Translation

• Images are translated
• „Compilation“ of runable image
• No emulation
• VAX/VMS -> Alpha/VMS -> Itanium/VMS
• Fast
• Good performance
• Programming language independant
• Shareable images do work

16

Binary Translation

• Input: VAX/VMS Image
• Output: Alpha/VMS Image
• OR:
• Input: Alpha/VMS Image or translated VAX/VMS

Image
• Output: Itanium/VMS Image

IT-Symposium 2005

www.decus.de 9

17

DECmigrate (VAX to Alpha)

• Translate images for which source code is not
available
− VAX Environment Software Translator (VEST) translates

VAX binary image file into a native Alpha image
− Translated images run under the Translated Image

Environment (TIE) on Alpha
− Alpha images contain native Alpha instructions

• Updated release by June ‘02
• Released and Supported by HP

18

VEST – Current Restrictions

• Will translate valid VAX/VMS image
− Image(s) must be linked on OpenVMS V6.2 (removed in future)

• Restrictions:
− Currently only up to V6.2 (removed in future)
− Only user- mode apps
− Non privileged instructions
− No self-modifying code
− No sys. Memory space reference
− No user-written system services
− No drivers

IT-Symposium 2005

www.decus.de 10

19

OpenVMS AEST Binary Translator
• Will translate Alpha OpenVMS binary images and libraries

linked under all OpenVMS versions from 6.2 to current
version

• Will translate a VESTed image that was translated by
DECmigrate from a VAX binary image

• Will translate images written in C, C++, FORTRAN, or
COBOL
− Will not translate applications written BASIC, Pascal, PL/1, or Ada

• Restrictions:
− Alpha binary code
− Only user-mode apps
− No privileged instruction
− No self-modifying code
− No sys. Memory space reference
− No user-written system services

20

Alpha Environment Software Translation

OpenVMS
Alpha

Recompile
& Test

Native
Binary

AEST

Requalify

OpenVMS I64

Native
Binary

Move to Native Binary
over time

TIE
Translated

Image
Environment

TMS1

Folie 20

TMS1 This needs to be verified. With each run of an image the image becomes 'more and more' translated,
e.g. native code generated.
Thomas Siebold; 2.2.2005

IT-Symposium 2005

www.decus.de 11

© 2005 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Software
Development

22

Development Tools
• OpenVMS Debugger
• DECset Toolset:
−Code Management System
−Digital Test Manager
− Language Sensitive Editor
−Source Code Analyzer
−Module Management System
−Program Coverage Analyzer

IT-Symposium 2005

www.decus.de 12

23

Software Development
NetBeans?
• Sun-Sponsored Open-Source Integrated Development

Environment
• 100% Java – runs anywhere there’s a JVM
• Feature-rich, drag-n-drop GUI creation, JSPs, Web

services
• Extensible
• Supports other languages (C/C++, XML, HTML, Fortran*,

Cobol*, Pascal*)
− Support for CMS
− CVS client
− Ant (multiple platform builds from one build definition file)

24

Software Development

“NetBeans”?
• Used to have Enterprise Toolkit for Visual Studio (V6), now replaced

by Netbeans

“Distributed NetBeans” ?
• Allows any desktop (Windows, Linux, HP-UX, etc.) to be used to do

remote OpenVMS development
• NetBeans runs on the desktop
• Provides remote compilation (Java, C/C++,…), error navigation,

remote execution, and eventually debugging
• Also provides remote Ant (“Make without the wrinkles”) operations
• Remote CMS operations

IT-Symposium 2005

www.decus.de 13

25

Software Development
Distributed NetBeans

DCL Commands

DCL Command Output

Advanced Server
Share, SAMBA, FTP

OpenVMS Alpha
HP Desktop
Computer

26

Editing
Workspace

The Main
Window

The
Explorer

Properties

IT-Symposium 2005

www.decus.de 14

© 2005 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Application
Considerations

28

Architecture specific build procedures
• ARCH_TYPE
−Returns 1 on VAX, 2 on Alpha, 3 on Integrity
−Supported on OpenVMS Version 5.5 or later

• ARCH_NAME
−Returns text string "VAX" on VAX, "Alpha" on Alpha,

“IA64” on Integrity systems
−Supported on OpenVMS Version 5.5 or later.

• HW_MODEL
−Returns an integer that identifies a particular hardware

model
−Values >= 1024 identify Alpha systems
−Values = 4096 identify Integrity systems

IT-Symposium 2005

www.decus.de 15

29

Architecture specific build
procedures

$! Determine architecture type
$ type_symbol = f$getsyi("arch_type")
$ if type_symbol .eq. 1 then goto ON_VAX
$ if type_symbol .eq. 2 then goto ON_ALPHA
$ if type_symbol .eq. 3 then goto ON_INTEGRITY
$ ON_VAX:
$!Do VAX-specific processing
$ exit
$ ON_ALPHA:
$!Do Alpha-specific processing
$ exit
$ ON_INTEGRITY:
$!Do INTEGRITY-specific processing
$ exit

30

Conditionalized code
• This is the first (and easiest) step to take
−Usually, IA64 should take what use to be the Alpha

code path.
• In some cases, IA64 specific code path should be added

#include <stdio.h>
#include <arch_defs>
void main()
{
#ifdef __vax

printf("This is the VAX codepath");
#endif
#ifdef __alpha

printf("This is not the VAX codepath");
}

IT-Symposium 2005

www.decus.de 16

31

Conditionalized code – example
IPL31> type arch_test.c

#include <stdio.h>
#include <arch_defs>
void main()
{
#ifdef __vax

printf("This will be printed on VAX\n");
#endif
#ifdef ALPHA

printf("This will be printed on Alpha\n");
#endif
#ifdef __ia64

printf("This will be printed on IA64\n");
#endif
#ifndef __vax

printf("This program is not running on VAX");
#endif
}

32

Conditionalized code

Executed on IA64 system
IPL31> write sys$output f$getsyi("arch_name")
IA64
IPL31> r arch_test
This will be printed on IA64
This program is not running on VAX
IPL31>

Executed on Alpha system

MIKAXP> write sys$output f$getsyi("arch_name")
Alpha
MIKAXP> r arch_test
This will be printed on Alpha
This program is not running on VAX

IT-Symposium 2005

www.decus.de 17

33

Conditionalized code
Sample Fortran 90 program

$!
$! Note: F90 not available on VAX
$!
$ if f$getsyi("ARCH_NAME") .EQS.

"IA64"
$ then
$ f90/define=IA64 archdef_for
$ else
$ if f$getsyi("ARCH_NAME") .EQS.

"Alpha"
$ then
$ f90/define=ALPHA

archdef_for
$ endif
$ endif
$ endif
$ link archdef_for

program archdef

implicit none

!DEC$ IF DEFINED (VAX)

type *, 'Running on VAX hardware'

!DEC$ ELSEIF DEFINED (ALPHA)

type *,'Running on Alpha hardware'

!DEC$ ELSEIF DEFINED (IA64)

type *,'Running on Integrity hardware'

!DEC$ ENDIF

end

COM file Language file

34

Conditionalized code
Sample Basic program

$!! if you VAX or Alpha system is older,
ARCH_NAME may not be accepted

$!! by f$getsyi... ARCH_TYPE (1-VAX,
2=Alpha, 3=IA64) will be...

$ open/write out
sys$disk:[]archdef.basic_include

$ write out "%LET %ARCH_TYPE =
",f$getsyi("arch_type")

$ close out

$ purge sys$disk:[]archdef.basic_include

$ basic archdef_bas

$ link archdef_bas

$ exit

!

!

%INCLUDE "sys$disk:[]archdef.basic_include"

program archdef_bas

%IF (%ARCH_TYPE = 1)

%THEN Print "Running on VAX"

%ELSE %IF (%ARCH_TYPE = 2)

%THEN Print "Running on Alpha"

%ELSE %IF (%ARCH_TYPE = 3)

%THEN Print "Running on
Integrity"

%END %IF

%END %IF

%END %IF

end program

COM file Language file

IT-Symposium 2005

www.decus.de 18

35

Conditionalized code
Sample Cobol program

$!

$ if f$getsyi("ARCH_NAME") .EQS. "IA64"

$ then

$ cobol/conditional=I archdef_cob

$ else

$ if f$getsyi("ARCH_NAME") .EQS. "VAX"

$ then

$ cobol/conditional=V archdef_cob

$ else

$ if f$getsyi("ARCH_NAME") .EQS. "Alpha"

$ then

$ cobol/conditional=A archdef_cob

$ endif

$ endif

$ endif

identification division.

program-id. HW.

environment division.

data division.

procedure division.

p1. display "Hello World".

\A display "Running on Alpha".

\V display "Running on VAX".

\I display "Running on Integrity".

stop run.

COM file Language file

36

Conditionalized code
Sample Pascal
program

$ pascal archdef_pas

$ link archdef_pas

program example(output);

%if %arch_name = "Alpha"

%then

var handle : integer := 0;

%elif %arch_name = "IA64"

%then

var handle : integer64 := 0;

%elif %arch_name = "VAX"

%then

var handle : integer := 0;

%endif

begin

writeln('Program running on ',%system_name,

' ',%arch_name,

' ',%system_version);

%if %arch_name = "Alpha"

%then

writeln('Running on Alpha');

%elif %arch_name = "IA64"

%then

writeln('Running on Integrity');

%elif %arch_name = "VAX"

%then

writeln('Running on VAX');

%endif

end.

COM file

Language file

IT-Symposium 2005

www.decus.de 19

37

Example – Moving from F77 to F90
• When using double precision float (REAL*8) for doing

direct assignment (a=5.3)
F77 uses double precision
F90 uses single precision.
The result is slightly further away from the real 5.3

value.
• A computation will produce a different result with no error

signaled.
• Possible solutions:
− Fix the coding bug, as the assignment is wrong.

• Change the assignment to a=5.3D0 or a=5.3_8
• 5.3D0 works for both F77 and F90

− Compile using the /ASSUME=FP_CONSTANT switch

38

IEEE floating- point
• This is one of the biggest porting issues.
• Itanium supports only IEEE floating-point in
hardware

• On IA64 - IEEE floating-point is the default
floating point format for the compilers.
−VAX floating point formats will be supported

when specified as a switch to the compilers
−The compilers generate code to call conversion

routines (performance hit).

IT-Symposium 2005

www.decus.de 20

39

AXP> ty wait.c

#include <stdio.h>

main()

{

float wait=7.0;

printf("Waiting 7 seconds\n");

lib$wait(&wait,0,0);

printf("I'm done wainting..ciao...\n");

return 0;

}

Executed on Alpha:
AXP> cc wait

AXP> link wait

AXP> r wait

Waiting 7 seconds

I'm done wainting..ciao...

40

Executed on I64:
I64> cc wait

I64> link wait

I64> r wait

Waiting 7 seconds

%SYSTEM-F-FLTINV, floating invalid operation, PC=FFFFFFFF82142760, PS=0000001B

%TRACE-F-TRACEBACK, symbolic stack dump follows

image module routine line rel PC abs PC

LIBRTL 000000000016C752 FFFFFFFF82142752

LIBRTL 000000000020F430 FFFFFFFF821E5430

WAIT 0000000000010250 0000000000010250

WAIT 0000000000010180 0000000000010180

0000000000000000 FFFFFFFF80B1A030

0000000000000000 000000007AE1BEE0

The default floating point format used by LIB$WAIT is

F_FLOAT, which does not match the default floating point

format used on I64 (S_FLOAT)

IT-Symposium 2005

www.decus.de 21

41

Here is a modified version that will work on both
platforms, using the native floating point formats

I64> ty wait_common.c
#include <stdio.h>
#include <arch_defs>
#include <libwaitdef>
main()
{
float wait=7.0;
#ifdef __alpha

int mask = LIB$K_VAX_F;
#endif
#ifdef __ia64

int mask = LIB$K_IEEE_S;
#endif

printf("Waiting 7 seconds\n");
lib$wait(&wait,0,&mask);
printf("I'm done wainting..ciao...\n");

return 0;
}

42

IMACRO
• On I64 the calling standard changed
− We now use Intel’s calling standard
− IA64 only preserves register R4-R7 across routine calls
− Alpha preserves R2-R15
− Register numbering scheme has changed too
− High-level languageprorams (like C,Bliss) this is not

visible.
− High-level languages might trash a register IMACRO

assumed to be preserved (and vice versa)
− Please reference the IMACRO porting guide for more

details

IT-Symposium 2005

www.decus.de 22

43

Condition Handlers & SS$_HPARITH

•OpenVMS Alpha:
− SS$_HPARITH is signaled for a number of arithmetic error

conditions

•OpenVMS I64:
− SS$_HPARITH is never signaled for arithmetic error conditions
− the more specialized SS$_FLTINV and SS$_FLTDIV are used

•Requirement:
− Update condition handlers to detect the more specialized error

codes
− To keep common code extend it for to also consider

SS$_FLTINV and SS$_FLTDIV.

SS$_HPARITH

SS$_FLTINV

SS$_HPFLTDIV

Alpha I64

44

Quotas and Process settings
• OpenVMS I64 images are much larger,

sometimes 3x-4x!
• Start with 5x your Alpha settings and adjust
−BYTLM, FILLM, WSDEF, WSQUO, WSEXTENT,

PGFLQUOT

IT-Symposium 2005

www.decus.de 23

45

If this is not enough…..
there is more……

• We adopted Intel’s calling standard. Code with knowledge
about the calling standards will have to change
− Stack/frame walking – the code will need to be modified to use the

new LIB$*_INVO_* routines
− Home grown stack switching/threading – the code will need to be

ported to use Kernel Processes

• We adopted the ELF/DWARF formats. Code with
knowledge about image format and debug format will
have to change

• Calling LIB$FIND_IMAGE_SYMBOL and friends does not count.
The LIB$ routines were modified to support the new formats

46

Alignment faults
• Once the port of the application has been completed, you

might want to look at alignment faults
− Alignment faults are expensive on Alpha but are 100 times more

expensive on IA64
− The DEBUG SET MODULE/ALL command used to take 90

seconds. After fixing some alignment faults, it now takes 2 seconds.
− DCL procedures take approx. 10% less time to execute after fixing

alignment faults in DCL.

− You may detect alignment faults using FLT extension in SDA or
using SET BREAK/ALIGN option in the debugger

− Some alignment faults are easy to fix, some are very hard and
some
are close to impossible.

IT-Symposium 2005

www.decus.de 24

47

FLT Alignment Fault Tracing
• Ideal is no alignment faults at all !
−Poor code and unaligned data structures do exist

• Alignment fault summary…
− SDA> FLT START TRACE
− SDA> FLT SHOW TRACE /SUMMARY
− flt_summary.txt

• Alignment fault trace...
− SDA> FLT START TRACE
− SDA> FLT SHOW TRACE
− flt_trace.txt

48

Cost of alignment faults

100100101OpenVMS
I64

1041OpenVMS
Alpha

111OpenVMS
VAX

Unaligned,
compiler
doesn’t know

Unaligned,
compiler
knows

AlignedRelative cost
of access

IT-Symposium 2005

www.decus.de 25

49

Porting OpenVMS applications
VAX to Alpha to Itanium

Application Migration QA / Certification / Field Test / Release

VAX to Alpha

•32 Bit to 64 Bit

•two different OS code bases

•not all layered products ported

•Majority of time spent in porting the application and getting it working.

Application Migration QA / Certification / Field Test / Release

Alpha to Itanium

•64bit to 64bit

•one common OS code base

•all layered products ported

•QA time is not architecture specific and remains the same

© 2005 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Middleware

TMS2

Folie 50

TMS2 How much do I need to talk about here? These seem to many slides, following from here!?
Thomas Siebold; 3.2.2005

IT-Symposium 2005

www.decus.de 26

51

e-Business Infrastructure Packaging
for OpenVMS

• Secure Web Server (based on Apache)
including PHP, Perl, and JSP (Tomcat)
support

• Secure Web Browser (based on Mozilla)
• Software Development Kit (SDK) for the

Java™ platform
• Reliable Transaction Router
• Enterprise Directory (LDAP)
• COM
• BridgeWorks
• NetBeans
• Simple Object Access Protocol (SOAP)

Toolkit (based on Apache Axis)
• UDDI Client Toolkit

• The key e-Business, integration, and Internet technologies are
packaged with OpenVMS on the e-Business Infrastructure CD

52

OpenVMS
Website

IT-Symposium 2005

www.decus.de 27

© 2005 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

ISVs

54

OpenVMS ISV momentum: Cross-section
of leading ISVs porting to Integrity Servers

Over 800 applications and service offerings from 370 partners currently planned, more
every week.

250 apps and services declared ready - 80% of service offers available today!

IT-Symposium 2005

www.decus.de 28

55

http://h71000.www7.hp.com/solutions/matrix/i64partner_A.html

© 2005 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Next Steps....

IT-Symposium 2005

www.decus.de 29

57

How do I start?
• How do I start porting my application?
−There are several approaches:

• Re-examine the application for potential “hot spots”
• Compile/link and see what’s broken
• Compile and examine new messages

• There is no right approach, take the one that
you feel most comfortable with

58

The ultimate porting tool

Cook books can be rather useful,
But you have to trust them.
And mistakes happen.

1 kg of salmon
10 kg of salt
5 g of pepper …

The absolutely best porting tool is easy to use …

Nothing beats understanding!

IT-Symposium 2005

www.decus.de 30

59

Questions ?

60

