
1

OpenVMS Port
to the

Itanium® Architecture

Thomas Siebold
Technology Consultant
Alpha Systems Division

Thomas.siebold@hp.com

page 2

„Bitte schalten Sie Ihr Handy aus !“

• This is a ‚mobile phone‘

• ...but in other countries a
‚handy‘ is a

• ...but in Germay it is called a
,handy‘

2

page 3

Agenda

• Surprise !!!
• Base System Port
• Systems for OpenVMS
• Layered Products
• Applications

page 4

Surprise – It is real ! ☺

3

page 5

OpenVMS on Itanium® -- 31. Januar 2003 15:31

Schedule

Schedule

4

Schedule

page 8

Development Schedule

• H1 2003 - Release 8.0:
– selected ISVs, SW partners, early adopters;
– contains limited layered products

• H2 2003 - Release 8.1:
– more selected ISVs, SW partners, early adopters;
– contains more layered products

• H1 2004 - Release 8.2:
– production quality, general customer release

5

page 9

OpenVMS V8.2

H1 03H1 03 H1 04 H1 04 H2 04H2 04H2 03H2 03

HP OpenVMS Itanium®-based Systems Roadmap

First Ship

Production
Quality

1st Boot occurs/Internal Kit

H1 03: OpenVMS V8.0 “Mako”
Audience: Key ISVs, Partners, Early Adopters
OpenVMS Itanium Operating System, Monitor Utility
Networks: DECnet Phase IV, TCP/IP
Development Tools: Cross Linker, Librarian
Cross Compilers: C, C++, BLISS, FORTRAN, IMACRO

H2 03: OpenVMS V8.1 “Jaws”
Audience: Key ISVs, Partners, Early Adopters
Limited cluster functionality (4 nodes)

Native Compilers: C, C++, BLISS, FORTRAN, IMACRO,
Pascal, BASIC, COBOL

Additional Layered Products…Networks, Data Serving,
Security, eBusiness Integration, Application Development

Internal releases

External releases

hp confidential

page 10

hp OpenVMS roadmap

Platform transition period

03 0402 05

Itanium®-based
HP server

HP AlphaServer EV68 EV7 EV79

Madison Itanium®-based
system upgrades

Itanium®-based
system upgrades

Sell at least until
2006; support at
least until 2011

Version Version Version
7.3 7.3-1 7.3-2

HP
OpenVMS

Alpha

Boot Jan 31, 2003
OpenVMS V8.0

Dev. Kit H1 ‘03
OpenVMS V8.1

Dev. Kit H2 ‘03

HP OpenVMS V8.2 (H1CY04)
for Itanium®-based systems
& AlphaServer systems

3rd Release
Production Quality

Future releases
providing
continued

enhancement &
support

HP OpenVMS
on Itanium®-

based systems

Itanium® 2
processor

6

What’s being ported…

….and how ?

????

What’s being ported…

….and how ?

????

What is being ported ??
And how ??

7

page 13

What version of OpenVMS is being ported?

– We are adding support to the OpenVMS AlphaServer
code base for the Itanium® architecture.

– We will create releases from the same sources for both
AlphaServer and Itanium®-based systems.

– The first Itanium® architecture release will reflect on-
going OpenVMS development work (performance
improvements, device support, etc.)

page 14

Porting Philosophy

•This is not a “bug for bug compatible” coding
exercise. We are doing much, much more.

1. we are not just porting to Itanium® architecture;
we are making OpenVMS more portable.

2. we are improving code maintainability (and
sometimes performance) by replacing VAX
assembler code when appropriate.

3. we are making the system more open to the
possibility of exchanging code with other systems,
especially analysis tools. (This has already helped
us debug some new code.)

8

The Challenges

The Challenges

Challenges

9

page 17

Alpha-to-Itanium® vs. VAX-to-Alpha

• VAX-to-Alpha

– CISC to RISC

– huge volume of coding work

– make 1100+ VAX MACRO-32 modules compileable

– 32b to 64b

– data alignment

– atomicity

– multiple, out-of-order execution streams

• Alpha-to-Itanium®

– more complex

– less coding

– 64bits vs 64bits

– RISC / EPIC

page 18

lines of code perspective

New Recompile

Porting effort is very focused on a few
areas of the system.

OpenVMS on Itanium®-based systems

10

page 19

Big Challenges for the Base OS

• No Alpha Console
– Booting
– Device Discovery
– Interrupts
– TLB miss handler

• No Alpha PALcode
– VAX Queue Instructions
– VAX Registers
– IPL and mode change

• Different primitives in CPU
– Register Conventions
– Exception Handling
– Atomic Instructions
– Process Context

• Plus, we decided to change
– calling standard
– object language
– image format

page 20

Compare to move from VAX OpenVMS

• Customer Work
– User-written system services
– User-written device drivers
– Tools interpreting object, executable formats

• Most applications should compile and go

• User mode will not see a difference on OpenVMS on
Itanium®

11

Progress Report

page 22

It’s All in the Software

OpenVMS

Console

Application

Itanium®
architecture

OpenVMS

Console

Application

VAX

OpenVMS

Application

Alpha

Console
PALcode

FW

HW

SW

12

page 23

Itanium® console architecture

• processor abstraction layer (PAL)
• system abstraction layer (SAL)
• extensible firmware interface (EFI)
• advanced configuration and power interface (ACPI)

Windows 2000 LINUX

OpenVMS

Intel® PAL, EFI, ACPI

OEM1HP

OEM2 OEM3
SAL

HP-UX with Tru64 UNIX features

page 24

Itanium Firmware Architecture

• Processor Abstraction Layer (PAL)
• System Abstraction Layer (SAL)
• Extensible Firmware Interface (EFI)
• Advanced Configuration and Power Interface (ACPI)

clocks memory I/O

PAL

SAL ACPI

EFI

O/S

CPUs

13

page 25

early boot: progress report

• First boot on January 31, 2003
• First boot environment with ‘cheats’ to help development

– Images loaded during boot are ‘execlets’, e.g. pieces of executive
• Commands that stay in DCL work
• Calling a shared image, e.g. ‘DIR’ crashes…
• OpenVMS booted on a rx2600 in late March

page 26

Loading Images: Progress Report

– Images are industry standard “inside”
Executable and Linkable Format (ELF)

– Exec Loader
• Major MACRO-32 module rewritten in C

• Linked into SYSBOOT

• Debugged and running on Alpha

• Relocations and fixups in progress

– Image Activation and INSTALL
• adding ELF knowledge and will test on Alpha first

14

page 27

Console: Booting on EFI

• Requires “OS loader” to be in a FAT32 file partition
• OpenVMS implementation

– A PC-style Master Boot Record overlays the ODS-2 “boot
block”

– The MBR contains a pointer to an ODS-2 container file
which acts as the FAT32 partition

– Our “OS loader” loads IPB
– VMS_LOADER and IPB do on the Itanium® architecture

what the Alpha console and APB do on Alpha in preparing
the system for SYSBOOT

page 28

ODS-2 disk

Seen from VMS:
EFI$FAT32.SYS

PC style boot block

Seen from EFI:
FAT32 partition IPB

OS Loader

SYSBOOT

15

page 29

PAL code ?

Alpha: Privileged Architecture Library
CHMK
REMQHI
Alignment traps …
Interrupt assistance
Context switching

Itanium: Processor Abstraction Layer
…

The Pal code is used to make different implementations
the same appearance to the O/S

Alpha PAL code belongs to "firmware"

page 30

Privileged Architecture Library (PALcode)

• Alpha PALcode execution environment
• Complete control of machine state

• Interrupts disabled

• I-stream mapping disabled

• A CALL_PAL is very expensive
• Not all functions need such complete control
• Instructions

• Complex sequencing and atomic operation

• VAX interlocked instructions

• Privileged instructions

• Translation buffer management
• Interrupt and exception setup and dispatching
• Synchronization primitives

16

page 31

Remove from head of queue, interlocked

• VAX: microcoded instruction REMQHI

• Alpha: CALL_PAL REMQHIL

• Itanium® Architecture: OpenVMS system service
SYS$PAL_REMQHIL

page 32

CALL_PAL Replacement: Progress Report

• Created macros in libraries and header files to redefine existing
builtins to generate either in-line code or calls to new
SYS$PAL_xxx services.

• No source code changes for standard function Alpha CALL_PALs.

• C: __PAL_xxx; BLISS: PAL_xxx; MACRO-32:
EVAX_xxx

• The new services will execute the CALL_PAL on Alpha.
• Existing source unchanged: ipl = __PAL_MFPR_IPL();

• New common source: ipl = SYS$PAL_MFPR_IPL();

– VAX queue instruction replacement code is complete
– If no builtin on Alpha then no builtin on Itanium® architecture (e.g.

CSERVE)
– A few CALL_PALs have no Itanium® architecture function (e.g.

MTPR_PERFMON)
– SWPCTX - must rewrite source code

17

page 33

Four Processor Modes

• High - 0 - kernel
• 1 - exec
• 2 - supervisor
• Low 3 - user

• Identical to VAX & Alpha

page 34

IPL / ASTs / software interrupts

• 0 - 31 IPLs, but we only define 14 of them
– (2,3,4,5,6,7,8,9,10,11,15,21,22,31)
– Map 16-31 directly onto a 16-bit interrupt register
– Levels 0-15 are generated by software

• OpenVMS
– Controls IPL and mode changes
– delivers ASTs, software interrupts, exception notification

• Alpha (VAX?) “registers” (e.g. ASTSR, IPL, …) become
– Itanium® processor registers
– CPU database cells
– HWPCB cells

18

page 35

software interrupt services: progress report

• began debugging in LINUX Test Harness on Itanium®-based systems
(compiled and linked on LINUX)

• now debugging directly in “boot” environment (compiled and linked on
OpenVMS)

• written in C and assembler - will easily move to OpenVMS execlets
• context switching
• register save / restore
• mode change
• system service entry / exit (using epc instruction)
• interrupt handling
• exception notification with complete exception frame
• AST delivery (rewritten in C)
• related CALL_PAL replacements (RD_PS, MTPR_SIRR,

MFPR_ASTSR,..)

page 36

virtual address space

• address space is 8TB in size
(initially)

• 32-bit System Page Table (SPT)
window will still be created in S1
space for 32-bit device driver
code

• each Itanium® architecture
region will have its own page
table space

• P0, P1, S0, S1 will be 32-bit; P2
and S2 will be 64-bit

6

7

5

4

3

2

1

0

S0, S1, S2

P0, P1, P2

RID

19

page 37

memory management: progress report

• page size
• page protection
• virtual address space
• PTE format
• system pages for EPC instruction created and verified
• replace ASNs with RIDs
• fault handlers
• alignment fault fixups
• TLB miss handler
• related CALL_PAL replacements (PROBER, PROBEW,

MTPR_TBIxx)
• rewrite ACCVIO handler in C

page 38

synchronization techniques

– requirement: to read/write a shared location in a single
atomic operation

– example OpenVMS Uses:
• Spinlock
• MUTEX
• Semaphore
• Queue instructions

– Alpha: CALL_PAL, LDxL / STxC and MB
– Itanium® architecture: FETCHADDx, CMPXCHGx, XCHGx,

MF, and acquire/release semantics on loads and stores
– compilers have builtins, e.g. C: __CMP_SWAP_QUAD

BLISS: ADD_ATOMIC_LONG

20

page 39

Process Context Switching

• More registers - 128 general, 128 floating... but
– 2 FEN bits distinguish 32 registers vs. up to 128 registers in use
– Considering “lazy restore” of FP registers
– Register stack engine knows the general registers to save

• 2 Stacks
– Memory stack - move a pointer
– RSE backing store

• Fill/spill happens in the background

page 40

replacing alpha-specific instructions

– C “asm” uses rewritten in C (not assembler)
• memory barrier

• LDxL / STxC sequences

• get caller’s PC (Alpha code knows about R26)

• no PAL builtin

– MACRO-32: EVAX_LDxL, EVAX_STxC automatically
handled by IMACRO compiler!

21

page 41

other progress

– instruction decoder is complete - used by SDA, DEBUG,
fault handlers

– BUGCHECK.M64 rewritten in C
– XDELTA now in use

• there is ^P (handled by OpenVMS on Itanium®-based
systems)

• breakpoint on the instruction not the bundle
• single stepping “unexecuted” code will be interesting

– LIB$IPF_CALLING_STANDARD et.al. in progress
– DEBUG knows about DWARF symbol tables
– running images linked with the OpenVMS LINKER that

contain assembler, C, BLISS, and MACRO-32.
– Much of the unchanged code now being compiled

And……
What about
Clustering ?

22

page 43

OpenVMS
mixed architecture clusters

• Clustering is a software architecture

• underlying chip is easy to deal with

• Will support mixed OpenVMS Alpha and OpenVMS

Itanium®-based clusters in a phased roll out

• Do you need VAXes in the same cluster?

page 44

Star Coupler

CI Storage

HSJ

LAN for
Host-to-
Host
Comm.

Itanium® processor family and
OpenVMS Clusters

OpenVMS on
Itanium®

Processor
Family

Fibre Channel Storage

FC Switch

HSG/HSV

OpenVMS on AlphaServers

host-to-host
LAN interconnects
10/100 and Gigabit

shared storage
Fibre Channel

CI storage
Served from

Alpha to Itanium®

23

page 45

How do Cluster Interconnects support
Itanium®-based systems?

• Only “newer technology” adapters moving over
– Gigabit and 10/100 Ethernet adapters
– Fibre Channel and Ultra3 SCSI adapters
– ATM and FDDI moving at a later time
– No CI, MC, DSSI, or multi-host SCSI

• New Interconnect Technology only on Itanium®-
based systems

– Infiniband assumed to replace MC on Itanium®
• Revisions of LAN and FC/SCSI adapters will be

supported on both Alpha and Itanium®

page 46

WHAT did you say ? Or The nomenclature game

•Bytes Intel® Alpha

• 1 byte byte

• 2 halfword word

• 4 word longword

• 8 doubleword quadword

• 16 quadword octaword

24

page 47

Change of Name

OpenVMS on Itanium(r)

Will be called

„hp OpenVMS Industry Standard 64“
(Official Name)

or
„OpenVMS I64“
(Informal Name)

Layered products

25

Layered products

page 50

Development Schedule

H1 2003 - Release 1 V8.0 : selected ISVs, SW partners, early
adopters; contains limited layered products

H2 2003 - Release 2 V8.1 : more selected ISVs, SW partners, early
adopters; contains more layered products

H1 2004 - Release 3 V8.2 : production quality, general customer
release

Layered Product schedules

http://www.compaq.com/hps/ipfenterprise/openvms_move.html

26

page 51

hp OpenVMS on Itanium® Software Product
Porting Rollout

1st EAK Release - OpenVMS on Itanium Version 8.0 “Mako” - H1’03

OpenVMS Core: OpenVMS Itanium Operating System, Monitor Utility, RMS Journaling

Networks: DECnet Phase IV, TCP/IP

Development Tools: LSE, CMS, MMS, DTM, TPU

Cross Compilers: C, C++, BLISS, FORTRAN, IMACRO cross compilers, CRTL

page 52

2nd EAK Release - OpenVMS on Itanium Version 8.1 “Jaws” – H2’03

OpenVMS Core: OpenVMS Itanium Operating System, Limited Cluster Functionality (4-8
Nodes), DECwindows Motif, Monitor Utility, RMS Journaling, Basic Security Features
Except Security Server and OpenVMS ACME

Networks: DECnet Phase IV, DECnet Plus, TCP/IP, Advanced Server, DFS

Development Tools: LSE, CMS, MMS, DTM

e-business: XML, Compaq Secure Web Server (Apache), Compaq Secure Web Browser
(Mozilla), NetBeans, RTR, Fast Virtual Machine for Java

Compilers: Java, C, C++, BLISS, FORTRAN, IMACRO (MACRO32 & AMACRO port),
CRTL, Pascal, BASIC, COBOL

Security: CDSA, Kerberos, OpenSSL

Other: SRI Binary Translator

hp OpenVMS on Itanium® Software Product
Porting Rollout

27

page 53

hp OpenVMS on Itanium® Software Product
Porting Rollout

Production Release: OpenVMS on Itanium Version 8.2 “Topaz” - H1’04
OpenVMS Core: OpenVMS Itanium Operating System, Full Cluster Functionality (8-16 node
configurations with more configurations added over time), Volume Shadowing, DECwindows Motif,
Monitor Utility, RMS Journaling, Basic security features including Security Server and OpenVMS ACME

Networks: DECnet Phase IV, DECnet Plus, TCP/IP, Advanced Server, DFS, X.25 OpenVMS

Development Tools: LSE, CMS, MMS, DTM, PCA, GNAT Ada

e-business: XML, Compaq Secure Web Server (Apache), Compaq Secure Web Browser (Mozilla),
NetBeans, RTR, Fast Virtual Machine for Java

Middleware: ACMS, DECforms, DECforms Web Connector, TP Web Connector, TP Desktop
Connector, COM for OpenVMS, FMS

Compilers: Java, C, C++, BLISS, FORTRAN, IMACRO (MACRO32 & AMACRO port), CRTL, Pascal,
BASIC, COBOL

Security: CDSA, Kerberos, OpenSSL, ACME Login, Encryption for OpenVMS

System Management: Availability Manager, Web Agents, The Data Collector for BMC SW (TDC), ECP
Tools, GCU/GCM, OpenVMS Management Station

Storage Products: ABS, SLS, SW RAID, DFO, HSM, Media Robot Utility, Saveset Manager, MDMS,
DCSC, RDF for Archive Backup System & Storage Library System

Other: SRI Binary Translator

page 54

hp OpenVMS on Itanium® Software Product
Porting Rollout

OpenVMS on Itanium – Layered Product Release Only - H2’04
OpenVMS Core: OpenVMS Itanium Operating System, Expanded Cluster Functionality (Qualific -96 nodes, no
restrictions), Volume Shadowing, DECwindows Motif, Monitor Utility, RMS Journaling, Basic security features including
Security Server and OpenVMS ACME, DECram, Multi-media Management Services

Networks: DECnet Phase IV, DECnet Plus, TCP/IP, Advanced Server, DFS, X.25

Development Tools: LSE, CMS, MMS, DTM, PCA, GNAT Ada, GKS, Phigs, OMNI API/MMS, SCA

e-business: XML, Compaq Secure Web Server (Apache), Compaq Secure Web Browser (Mozilla), NetBeans, RTR, Fast
Virtual Machine for Java, Enterprise Directory, BridgeWorks

Middleware: ACMS, DECforms, DECforms Web Connector, TP Web Connector, TP Desktop Connector, COM for
OpenVMS, FMS, DCE, Datatrieve

Compilers: Java, C, C++, BLISS, FORTRAN, IMACRO (MACRO32 & AMACRO port), CRTL, Pascal, BASIC, COBOL

Security: CDSA, Kerberos, OpenSSL, ACME Login, Encryption for OpenVMS

System Management: Availability Manager, Web Agents, The Data Collector for BMC SW (TDC), ECP Tools,
GCU/GCM, OpenVMS Management Station

Storage Products: ABS, SLS, SW RAID, DFO, HSM, Media Robot Utility, Saveset Manager, MDMS, DCSC, RDF for
Archive Backup System & Storage Library System

Mail and Messaging: MAILbus 400, IMAP4 Server, X.500 Admin Alpha, LDAP API, DEC/EDI (Electronic Data
Interchange)

Other: SRI Binary Translator

Services Tools: WEBES

28

page 55

Itanium® Compiler Plans (1 of 3)

• C
– CPQ C

• Itanium® architecture implementations of OpenVMS CPQ C
V6.5 compiler

• GEM backend

• Use for recompile/relink/requalify

• Available with V8.0 (cross)

– Intel Based C (= C dialect support in C++)
• Intel® Electron backend

• Will include some features from CPQ C

• Compiler for moving forward

• Available in future release (8.2)

page 56

Itanium® Compiler Plans (2 of 3)

• C++
– Based on the same front end compiler technology as

Compaq C++
– Use for recompile/relink/requalify
– Intel® backend code generator
– Intel C/C++ compiler

• COBOL, BASIC, PASCAL, BLISS
– Itanium® architecture implementations of the current

OpenVMS compilers
– GEM backend code generator

29

page 57

Itanium® Compiler Plans (3 of 3)

• Java
– Itanium® architecture implementation of J2SE V1.4.2

• Fortran
– Itanium® architecture implementation of current OpenVMS Fortran

compiler
– Intel® Electron code generator back end

• IMACRO
– Compiles ported VAX Macro-32 code for Itanium® architecture
– Itanium® architecture equivalent of AMACRO

• ADA
– We will provide an Ada-95 compiler
– We will not port the existing Ada-83 compiler

page 58

Development Tools

• DECset development tools CMS, MMS, LSE, TPU &
DTM are scheduled to be available with the H1 2003
release
– PCA is scheduled to be available with the H1 2004 release

• OpenVMS Debugger
• HP Services will be available to assist

30

Migration Tools

page 60

OpenVMS Migration Software for Vax to Alpha V1.2
formerly: DECmigrate (Vax to Alpha)

• Translate images for which source code is not
available

– VAX Environment Software Translator (VEST)
translates VAX binary image file into a native Alpha
image

– Translated images run under the Translated Image
Environment (TIE) on Alpha

– Alpha images contain native Alpha instructions
• Updated release V1.2 available since June ‘02
• Released by HP, supported by SRI

31

page 61

VEST – Current Restrictions

• Will translate valid VAX/VMS image
– Image(s) must be linked on OpenVMS

• Restrictions:
– Version restriction removed by V1.2
– Only user- mode apps
– Non privileged instructions
– No self-modifying code
– No sys. Memory space reference
– No user-written system services
– No drivers
– No applications written in PL/1 due to lack of PL/I RTL
– No Ada applicatons

page 62

“HPQmigrate” ☺ - Alpha to Itanium®

• Will translate Alpha OpenVMS binary images and libraries linked
under all OpenVMS versions from 6.2 to current version

• Will translate a VESTed image that was translated by
DECmigrate from a VAX binary image

• We’re looking for feedback on what languages need to be
supported

• Restrictions: Alpha binary code
– Only user-mode apps
– Non privileged instruction
– No self-modifying code
– No sys. Memory space reference
– No user-written system services
– No applications written in PL/1due to lack of PL/1 Runtime Library
– No Ada applications

32

page 63

Binary Translation

• Input: VAX/VMS Image
• Output: Alpha/VMS Image
• OR:
• Input: Alpha/VMS Image or translated VAX/VMS Image
• Output: Itanium®/VMS Image

Applications

33

Compatibility is the Rule,

Not the Exception

page 66

Native Compilers

• Ada (3rd Party)
• Basic
• C
• C++
• COBOL
• FORTRAN
• Pascal

• IMACRO

• Bliss

• Java

• Itanium® Assembler

34

page 67

Development Environment

• OpenVMS development
environment

– ANALYZE command
– Compilers
– Debugger
– DECset (CMS, MMS, etc.)
– Librarian
– Linker
– Message utility
– etc.

page 68

Operations Environment

• DCL is DCL is DCL is ….
• System Management Interface (SYSMAN, SYSGEN)
• Command procedures for VAX continue to work on Alpha and
Itanium®

35

page 69

User and Environment

• OpenVMS is OpenVMS:
– Accounts, ownership, permissions work the same way
– Device and batch queues work the same way
– DCL works the same way
– User procedures “just work”

Compatibility is the Rule,

Not the Exception

but

What is different

36

page 71

IPF Registers

• General Registers R0-R127
– R0-R31 are static registers
– R32-R127 are stacked registers that are “redefined” at the

start of each procedure
• Floating Registers FP0-FP127
• Predicates P0-P63
• Branch Registers B0-B7
• Application Registers
• Control Registers
• Process Status Register (includes slot index within

current bundle)
• Instruction Pointer (also software-generated PC)
• Etc etc etc

page 72

IPF Instructions

• Instructions are contained in bundles
– 128 bits per bundle
– 3 41-bit instruction slots
– 5-bit template that describes instruction type in each slot:

• One of Integer, Memory, Branch, Floating, eXtended

• Total of 112 distinct instruction formats for all types

– Almost all formats include a qualifying predicate field
• If the matching predicate register is clear, the instruction is

decoded and executed but its results are discarded

• Predicate register zero is always set

37

page 73

IPF Instructions (cont)

• Instruction style is “(Pn) opcode target(s)=source(s)”

– Example:
(p4) cmp.eq p7,p12 = r37, r52
(p7) br label1
(p12) br label2

– First instruction only:
• P4 controls whether or not the results are kept or discarded
• the result registers are predicate registers P7 and P12
• R37 is compared for equality with R52

• If equal: P7 is set to 1 and P12 is set to 0.

• If not equal: P7 is set to 0 and P12 is set to 1.

– Combination of three instructions show how an if-then-else might be
coded.

page 74

Applications

• The Data
– Core data formats are identical
– Data conversion routines are available
– VAX, Alpha and Itanium® prefer natural alignment
– VAX compilers default to byte alignment
– Alpha compilers default to natural alignment
– Itanium® compilers default to natural alignment

38

page 75

Alpha – Itanium® Comparison

Alpha Itanium®

64-bit addresses 64-bit addresses

64-bit processing 64-bit processing

Instructions:simple Instructions:simple, bundled (3)

All same length (4 bytes)) All same length (128bit)

Load/store memory access Load / store memory access

Severe penalty for unaligned data Severe penalty for unaligned data

Many registers (32 –I, 32-FP) Huge number of registers (128 GPR, 128
FPR,…)
Instructions completed in order issued

Deep pipelines

Large page size (varies from 8KB to 64KB) Large page size (8k bytes, variable)

Deep pipelines and branch prediction

Out of order instruction completion

page 76

Itanium® vs Alpha Datatypes

Itanium® Data Types Alpha Data Types
byte byte
halfword word
word longword
doubleword quadword
quadword (octaword)
-- F_floating
-- D_floating (53-bit precision)
-- G_floating
X_floating X_floating
S_floating (IEEE) S_floating (IEEE)
T_floating (IEEE) T_floating (IEEE)
82bit floating (in reg) --
-- Absolute longword queue
-- Absolute quadword queue
-- Self-relative longword queue
-- Self-relative quadword queue
-- --
-- --
-- --
-- --

39

page 77

Applications

• Incompatibilities, Differences
• Memory Page Size

– VAX: Fixed Page Size
• 0.5KB

• 512 bytes

– Alpha: Implementation specific
• 8KB to 64KB

• 8192 to 65536 bytes

– Itanium®: Implementation specific
• 8KB now

• others later

page 78

Function return values are NOT in register zero

64 bit integer return values are in r8
128 bit return values in r8, r9
Up to 256 bits structure values in r8 – r11

Floating point single, double, double extended
values are returned in f8
Quad precision values in f8, f9
Structures can use up to f15

r8

r9

r10

r11

63 0

f8

f9

f10

f11

f12

f13

f14

f15

81 0

40

page 79

Register Mapping

0 = 8
1 = 9
2 = 28
3 = 3
4 = 4
5 = 5
6 = 6
7 = 7
8 = 26
9 = 27
10 = 10
11 = 11
12 = 30
13 = 31
14 = 20
15 = 21

16 = 14
17 = 15
18 = 16
19 = 17
20 =18
21 = 19
22 = 22
23 = 23
24 = 24
25 = 25

(RA) 26 = no mapping
(LP) 27 = no mapping

28 = no mapping
(FP) 29 = 29
(SP) 30 = 12 (SP)

(RAZ) 31 = 0 (RAZ)

page 80

So, what’s different? (1 of 3)

• Calling Standard
– publicly available today at

http://www.compaq.com/hps/ipf-enterprise/openvms.html
– Intel® calling standard with OpenVMS modifications

• No frame pointer (FP)

• Multiple stacks

• only 4 preserved registers across calls

– All OpenVMS provided tools will “know” about these
changes

• Your code that “knows” about the Alpha standard will
almost certainly need to change

41

page 81

So, what’s different? (2 of 3)

• Object file format
– ELF/DWARF industry standards plus our extensions

• ELF - Executable and Linkable Format, Itanium® Architecture object
code, images, etc.

• DWARF - Debugging and traceback information (embedded in ELF).

– All OpenVMS provided tools will “know” about these changes
– User written code that “knows” the object file format may have to

change
– We will be publishing these specifications in the near future
– Image header “tricks” may no longer work (Flip a bit to turn on/off

debugging)

page 82

So, what’s different? (3 of 3)

• Floating point data types
– Itanium® architecture supports IEEE float only
– All compilers that currently support F, D, G, S, T, and X (S

and T are native IEEE formats) will continue to do so on
Itanium® architecture

– IEEE will be the default (still working the details)
– White Paper with technical details available at

http://www.compaq.com/hps/ipf-enterprise/openvms.html

42

page 83

Private “Threading”

• What is it?
• Application that privately manages execution streams

• Written in Alpha assembler

• Knows details of Calling Standard and “context”

– OpenVMS will provide a set of routines
• use any language

• available from any mode

• can test on Alpha

• XQP and RMS have been converted

– Information available in “Writing OpenVMS Alpha Device
Drivers in C”, Sherlock and Szubowicz, Digital Press,
1996
• See sections on Kernel Process

page 84

Calling Standard
what’s the problem?

• on VAX and Alpha
– R0 = function return value

• on Itanium® architecture
– R0 = zero (RAZ)

an example:

43

page 85

Calling Standard
the present

– Intel® defined Itanium® Calling Conventions
– comparable to Alpha calling standard, but lacking

• argument count / information

• VAX/Alpha floating point datatypes

• support for translated images

• definition of invocation context handle

page 86

Calling Standard
our approach

– adopt the mainstream Itanium® standards
• Intel® calling standard

• ELF object / image file format

• DWARF debug information format

– extend / specialize as needed to support existing VMS
features

– Intel® has accepted our extensions

44

page 87

Calling Standard
the future

– OpenVMS Itanium® Calling Standard
– based on industry standard Itanium Calling Conventions
– extended for OpenVMS

• argument count / information register

• VAX/Alpha floating point formats

• translated image support

• additional definitions

page 88

Calling Standard Presentation

• Please see John Covert‘s Presentation

45

page 89

differences between Alpha
and Itanium® Architectures

– different registers for arguments and return value
– rotating registers and separate register stack
– GP (global data pointer) register
– different sets of scratch and saved registers
– PC range based condition handling

page 90

What code will I need to change?

• Architecture Specific code
– All Alpha assembler code must be rewritten

• Conditionalized code
– Build command files
$ if .not. Alpha ! Assumes VAX

– Application source code
#ifndef (alpha) // Assumes VAX

C asm code

• We will be providing a new Porting Guide with details

46

page 91

Architecture specific build procedures

• $! Determine architecture type
• $ type_symbol = f$getsyi("arch_type")
• $ if type_symbol .eq. 1 then goto ON_VAX
• $ if type_symbol .eq. 2 then goto ON_ALPHA
• $ ON_VAX:
• $!Do VAX-specific processing
• $ exit
• $ ON_ALPHA:
• $!Do Alpha-specific processing
• $ exit

page 92

Preparatory Steps

•Inventory your OpenVMS system
– Languages and applications in use
– Required 3rd party products
– Special hardware or drivers
– Application source code
•Examine your code for known differences and
architecture dependencies
•Upgrade application source code to current standards
– VAX C to DEC C
– Pthreads rather than DCE threads, CMA

47

page 93

Deployment Process

•Build files and process
•Test scripts and process
•Deployment strategy
– Cluster cut over / Fall back strategy
– Separate development and production systems

page 94

For further Information about
OpenVMS on Itanium

• OpenVMS on the Itanium® Architecture Web Sites
– General OpenVMS on Itanium information

http://h18003.www1.hp.com/hps/ipf-
enterprise/openvms.html

– Layered products schedules
http://h18003.www1.hp.com/hps/ipf-
enterprise/openvms_move.html

– Layered products plans (products that either will not be
ported or are under review)
http://h18003.www1.hp.com/hps/ipf-
enterprise/ovms_plans.html

– OpenVMS Partner plans
http://h18003.www1.hp.com/hps/ipf-
enterprise/partner_quotes.html

48

page 95

For more information

• Alpha and Itanium® information
• www.hp.com/products/alpha-itanium

• Itanium® architecture:
http://developer.intel.com/design/itanium/archSysSoftwa
re/

• Itanium® family processor hardware:
http://developer.intel.com/design/itanium/manuals.ht
m

• Software manuals:
http://developer.intel.com/design/itanium/arch_spec.
htm

page 96

Questions ??????????

49

page 97

