Building Large Fabrics

or ...

... what have SAN's and the Maldives in common?

Daily Business

Today: more than 50% of all SAN-Design discussion are about

REDESIGN

Why?

McDATA CONFIDENTIAL

Do you know the Maledive effect? MALDIVES 180 K people on 298 sq.km 2000 Islands 760 km N/S, 130 km W/E Total 5180 sq.km

FC-Switch or FC-Director?

- 64 installed ports
- 40 usable ports
- Upgrade steps: per unit (16/32 ports)
- Cost relation per usable port: 1,6*
 - Purchase
 - Maintenance
- max. 80% blocking
- only FCP support
- Heat output: factor 1,35 (1.412 BTU per hr. ⇒ 40 ports)
- 99,99% availability

- 64 installed ports
- 64 usable ports
- Upgrade steps: per port card (4 ports)
- Cost relation per usable port : 1,5*
 - Purchase
 - Maintenance
- 100% non-blocking
- FCP and FICON support
- Heat output: factor 1
 (1.672 BTU per hr. ⇒ 64 ports)
- · 99,999% availability

McDATA CONFIDENTIAL *Purchase price per installed port: Switch factor 1 vs. Director factor 1,5

Islands oder Large Fabrics?

SAN Architectures

1-Tier Switch SAN

Availability 99,9%

- X Hardware Failure redundant (partial)
- X Logical Failure
- X Online Maintenance redundant (partial)

Connectivity

- ✓ Any to any
- 32 Ports max

Performance - Best

- 0 Hop, single latency
- no interfabric routing

Scalability - limited

- · Limited to switch portcount
- Today: 8-32 Ports
- > 32 Ports add. switches

1-Tier Dual Fabric Switch SAN

Availability 99,99%

- X Hardware Failure redundant (partial)
- ✓ Logical Failure redundant
- X Online Maintenance (partial)
- Path Failover Software needed

Connectivity

- ✓ Any to any
- 64 Ports max

Performance - Best

- · 0 Hop, single latency
- · no interfabric routing

Scalability - limited

- Limited by Portcount
- Today: 16-64 Ports
- >64 Ports add. switches

McDATA CONFIDENTIAL

1-Tier Director SAN

Availability 99,999%

- √ Hardware Failure
- X Logical Failure
- ✓ Online Maintenance
- · Path Failover Software needed

Connectivity

- ✓ Any to any
- 140 Ports max

Performance - Best

- 0 Hop, single latency
- no interfabric routing

Scalability - limited

- · Limited to Portcount
- Today: 24-140 Ports
- >140 Ports Add. Director

1-Tier Dual Fabric Director SAN

Availability >99,999%

- √ Hardware Failure
- √ Logical Failure
- ✓ Online Maintenance
- Path Failover Software needed

Connectivity

- ✓ Any to any
- 280 Ports max

Performance - Best

- 0 Hop, single latency
- · no interfabric routing

Scalability - limited

- · Limited to Portcount
- Today: 48-280 Ports
- >280 Ports Add. Director

McDATA CONFIDENTIAL

2-Tier Dual Fabric SAN

Backbone Availability>99,999%

- ✓ Hardware Failure
- ✓ Logical Failure
- ✓ Online Maintenance
- · Path Failover Software needed

Connectivity

- ✓ Anyto any
- Example up to 384 ports (6064)
- Example up to 856 ports (6140)

Performance - High

- 1 Hop, Double latency
- · Simple interfabric routing

Scalability - Large

- Director Backbone "Port on demand"
- 1st Tier switches or directors
- · Scalabil up to very large portcounts
- Perfect conditions for island consolidation

Concepts

What should be considered ...

- Define your requirements
 - Availability, Connectivity, Bandwith, Backup, Management
- Define your SAN-Topology Logical Design
 - No. of Layer
 - Meshed- / Backbone Structure
- Define your Partner Physical Design
 - Open approach Interoperability support
 - Experience References
 - Service
- Define your Projectmanagement
 - Planning / implementation / documentation

McDATA CONFIDENTIAL

Define your requirements

They drive your network design needs

- Application Uptime
 - Network Availability
 - -Data Protection
 - -Network Performance
- Information Sharing
 - -Distance Requirements
 - -Any to any connectivity
- Data Growth Expectations
 - Scalability Needs
 - Choice of Building Block
 - Management Approach

- Location of Data
 - -Consolidation / Distributed
 - -MAN /WAN connectivity
 - -Network Performance
- Amount of Data
 - -Capacity needs
 - -Management

Case study 1

Case study 2

Concept Finance in Germany (1)

- 2 Layer principle
 - Concept of 2 independent SANs
 - Each across multiple locations
 - Global switches
 - -Backbone Switch on each location
 - -Connection to other locations (ISLs)
 - Local switches
 - -Consolidation Switches
 - -Connection only to the backbone (ISLs)
- 3 Classes of ports
 - High end direct on global switches (ED-5000)
 - Midclass 1 direct on local switches (ES-3016)
 - Midclass 2 FCAL (ES-1000 at global switches)

